Math 564: Advance Analysis 1
Lecture 4
Poop. For an algebia $\oint \in P(X)$ and a premeasine μ on d, then $\left.\mu^{\prime \prime}\right|_{A}=\mu$.
froof. Let $A \in A$, we need to show HAt for any cover $\left\{A_{n}\right\} \subseteq \$$ of A $\mu(A) \leq \sum_{n} \mu\left(A_{n}\right)$. WLOG, asane $A_{n} \subseteq A$ by replacing $A_{\text {, with }} A_{n} \cap A$ and aotiv that $\mu\left(A_{n} \cap A\right) \leq \mu^{\prime}\left(A_{a}\right)$ by monotonicity. Now $\bigcup_{n} A_{n}=A$. By dicijointitying, ae mag asnue $\bigcup_{n}\left(A_{n}=A\right.$, ro cthl addidivity gives $\mu(A)=\sum_{n} \mu\left(A_{n}\right)$.
W_{c} are wo readly to prove
Carathéodory's extersion theorem. Eiveng peremeasure μ on an algebea A admits an cxtension to a measare on $\left\langle f_{\sigma}\right\rangle_{\sigma}$.
If μ is σ-fivite, then his extension is unigue and still denste it μ.
Proot of existence. If is enaugh to shon ha y^{t} is finidyls acllitive in $\angle A>\rangle_{\sigma}$ bease then it would be ctbly supadditive, hence cthly adllitive beare is cleead, cthly subadditive.

let B be the collection of all won-batchering 1 ls, i.e. sets ha don'l butcher amy other sat. Then one shous that (a) B is a σ-algebic.
(b) $B \geq A . \quad$ (Easy.) Ther iffs automatic MA jod is finitely adllitive on B.

Ficst suppose tht $\mu(x)<\infty$.
Proot $2($ tao $)$. We define a psendo-metric d on $P(x)$ by

$$
d(A, B):=\mu \forall(A \Delta B) .
$$

Pseclorwetcic is alwost a netric except that $d(A, B)=0 \nRightarrow A=B$.
Detons on $\Delta .(P(x), \Delta)$ is an abelian group with \varnothing heing the 0 ad is $\quad \forall A \in P(x), \quad A \triangle A=\varnothing$.
$\left(2^{x}, t_{2}\right)$, hee t_{2} is the xor / binary aldition.
Recall: $A \Delta B=(A \backslash B) \vee(B \backslash A)=(A \cup B) \backslash(A \cap B)$.
(kin (a). Triangle inesualit holds: $d(A, C) \leq d(A, B)+d(B, C)$.
Preof. $\quad A_{\Delta} C=A \Delta(B \Delta B) \Delta C=(A \Delta B) \Delta(B \Delta C) \leq(A \Delta B) \vee(B \triangle C)$, so
let $B:=\bar{A}^{d}$, the closure of A in $P(x)$ with respect to d.
W_{1} show $n A$ is a σ-algebea al μ^{*} is finitly additive on B.
Claim (b). The function $P(x) \rightarrow[0, \infty)$ is 1-Lipschitz wrt d, i.e. $A \mapsto \mu^{\gamma}(A)$

$$
\left|\mu^{+o}(A)-\mu+(B)\right| \leq d(A, B) \quad \text { for any } A, B \in P(X) \text {. }
$$

In parficuler, if's roctinnons: $A_{n} \rightarrow A \Rightarrow \mu^{*}\left(A_{n}\right) \rightarrow \mu^{*}(A)$.
Pcoot. $\mu^{\gamma \gamma}(A)=d(A, \varnothing)$ and $x \mapsto d\left(x, x_{0}\right)$ is alwags 1-lipschitz: $\left|d\left(x, x_{0}\right)-d\left(y, x_{0}\right)\right| \leqslant d(x, y)$ by triacgle isepualiy.

Chain (c). The map $P(x) \rightarrow P(x)$ is a_{n} isometry, in partic. continuous,

$$
A \mapsto A^{c}
$$

Poof. $A \Delta B=A^{c} \Delta B^{c}$, hence $d(A, B)=d\left(A^{c}, B^{c}\right)$.
Thus, B is closed under complements becase $A_{n} \rightarrow A \Rightarrow A_{n}^{c} \rightarrow A^{c}$ s_{0} if $A \in B \quad a l \quad A_{n} \in \& \quad A A_{a} \rightarrow A$, then $A_{a}{ }^{c} \in \theta C$ $A_{n}^{C} \rightarrow A^{C}$ so $A^{C} \in B$.

Claim (d). The map $P(x) \times P(x) \rightarrow P(x)$ is 1 -Lipschitz wit " $d+d$ " $(A, B) \mapsto A \cup B \quad$ metric on $P(x)^{2}$, ie.

$$
d\left(A_{1} \cup B_{1}, A_{2} \cup B_{2}\right) \leqslant d_{1}^{(2)}\left(\left(A_{1}, B_{1}\right),\left(A_{2}, B_{2}\right)\right):=d\left(A_{1}, A_{2}\right)+d\left(B_{1}, B_{2}\right)
$$

In particular, V is continuous, hence so is \cap (bend copplevect is).
Prot.

$$
\begin{aligned}
& \left(A_{1} \cup B_{1}\right) \Delta\left(A_{2} \cup B_{2}\right) \subseteq\left(A_{1} \wedge A_{2}\right) \cup\left(B_{1} \Delta B_{2}\right) \text {, so } \\
& d\left(A_{1} \cup B_{1}, A_{2} \cup B_{2}\right) \leq \underbrace{*}_{\sim}\left(\mid A_{1} \Delta A_{2}\right) \cup\left(B_{1} \Delta B_{2}\right)) \underset{\substack{N \\
\text { sch }}}{\leqslant} d\left(A_{1}, A_{2}\right)+d\left(B_{1}, B_{2}\right)
\end{aligned}
$$

Thus B is closed uncles finite whious becere if $A, B \in B$ then $\exists\left\{A_{4}, A_{n}\right\} \leq \&$ with $A_{n} \rightarrow_{1} A$ of $B_{n} \rightarrow_{1} B$, hence h_{y} continuity of $U, A_{n} \cup B_{u} \rightarrow_{l} A \cup B$ and acct $A_{a} \cup B_{a} \in A$.

Claim (d'). $\quad^{n k}$ is finitely additive on The algebra BB.
Proof. Let $A, B \in O$ be disjoint, and ain to the $r^{*+}(A \cup B)=\mu^{\prime t}(A)$ $+\mu^{k}(B)$. Let $A_{n} \rightarrow_{d} A$ al $B_{n} \rightarrow B_{l}$ with $A_{n}, B_{n} \in A$. B_{l} the cocticin of $U, \quad A_{n} \cup B_{n} \rightarrow d A \cup B \xrightarrow{(6 /} \mu^{+}\left(A_{a} \cup B_{a}\right) \rightarrow \mu^{\alpha}(A \cup B)$. But $\operatorname{~H*}^{*}\left(A_{u} \cup B_{n}\right)=\mu\left(A_{n} \cup B_{n}\right) \approx_{\varepsilon_{n}} \mu\left(A_{n}\right)+\mu\left(B_{n}\right)$ becace $A_{n} \cap B_{n} \rightarrow A \cap B=\varnothing \Rightarrow \mu\left(A_{n} \cap B_{n}^{\Sigma_{n}}\right) \longrightarrow 0$. Hence:

$$
\mu^{*}(A \cup B) \approx_{\varepsilon_{n}} \mu^{*}\left(A_{n} \cup B_{n}\right) \approx_{\varepsilon_{n}}^{n} \mu^{n}\left(A_{n}\right)+\mu^{*}\left(B_{n}\right) \approx \varepsilon_{n} \mu^{*}(A)+\mu^{*}(B)
$$

Clain (e). Foc paicuise disjoint $\left\{A_{n}\right\} \leq A, \bigcup_{n<N} A_{n} \rightarrow \longrightarrow_{d} \bigcup_{n \in \mathbb{N}} A_{n}$. In pacticulac, B contaics all ctbl unious of rets in' $A,{ }^{n}<N$ disjointification.
Pcoof. $d\left(\bigcup_{n<N} A_{n}, A\right)=\operatorname{l}^{n k}\left(\bigcup_{n \geqslant N} A_{n}\right) \leq \sum_{n \geq N}^{c|f|} \sum^{v}$ rabadd $\left(A_{n}\right) \rightarrow 0$ becare $\sum_{n \in \mathbb{N}} \mu^{\prime}\left(A_{n}\right)$ converges: $\mu^{\mu}(X) \geq \mu^{*}\left(\bigcup_{n \in N} A_{n}\right) \geq \underbrace{}_{\operatorname{man}} \mu^{*}\left(\underset{n<N}{\bigcup_{n}} A_{n}\right)=\sum_{n<N} g^{*}\left(A_{a}\right)$.

Claim (e). B is a σ-algebia.
Proot. We only need to shan closhre uacler cfbl cuions. Let $B_{n} \in B$. let $A_{n} \in A$ be s.t. $A_{n} \approx_{\frac{\varepsilon}{2^{n+1}}}^{d} B_{n}$. Then $d\left(\bigcup_{n \in N} A_{a}, \cup B_{n}\right) \leq \sum_{n} d\left(A_{n}, B_{n}\right)$ $=\varepsilon$. But $\cup A_{a} \in B$ so
since \mathcal{E}^{n} is arbitrang ol B is closed, $\bigcup_{n \in \mathbb{N}} B_{n} \in B$.
Ohis finishes the proof for fivite pereaseres. The paof for p-finite preneasures in just K_{A} if $X=\bigcup_{n \in \mathbb{N}} X_{n}$ with $\mu\left(x_{n}\right)<\infty, x_{n} \in \mathbb{A}$, then the existence of the extension $n \in \mathbb{N}$ ge to $\langle f\rangle \sigma$ blllows foe the of $\left\langle A \mid x_{n}\right\rangle \sigma$ for each n. Tao's proof doesu't work fue won-0-finite prenelusures.

Unigenens. let μ be a r-firide preneashre. In fact if's eaough to prove tor a finide premeason μ hecaze if $X=\bigcup_{n a N} X_{n}$ with $x_{n} \in \notin \omega \quad \mu\left(x_{n}\right)<\infty$, then $\mu=\sum_{n \in N} \mu I_{x_{n}}$.
Let ν be a measue on $\langle\hat{\rangle}\rangle \sigma$ extenclicy μ. We shon $\gamma A \quad v=j^{-t}|\langle\lambda\rangle\rangle_{\sigma}$.
Firstls, note $K A$, $\nu \leqslant \mu^{*}$ bese if $B \in\langle A\rangle_{\sigma}$ al $\left.\bigcup_{n} A_{n}\right\rangle B$
 $\mu^{\star}=$ inf of left side, so $\nu(B) \leq \mu^{*}(B)$.
Next, mite nt v is 1 -lipscliitz writ d. Indeed,

$$
\begin{aligned}
& |\nu(A)-\nu(B)|=|\nu(A \backslash B)-\nu(B \backslash A)| \leq \nu(A \backslash B)+\nu(B(A)= \\
& =\nu(A \Delta B) \leq \mu *(A A B)=d(A, B) .
\end{aligned}
$$

Thus, v al μ^{*} are cortinnoas Enactions on $<f \geqslant \sigma$ shut are equal on the cense set A, hence $D=\mu *$

